Markov Random Fields in Vision Perception: A Survey

نویسندگان

  • Chaohui Wang
  • Nikos Paragios
چکیده

In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision, with respect to both the modeling and the inference. MRFs were introduced into the computer vision field about two decades ago, while they started to become a ubiquitous tool for solving visual perception problems at the turn of the millennium following the emergence of efficient inference methods. During the past decade, different MRF models as well as inference methods in particular those based on discrete optimization have been developed towards addressing numerous vision problems of low, mid and high level. While most of the literature concerns pairwise MRFs, during recent years, we have also witnessed significant progress on higher-order MRFs, which substantially enhances the expressiveness of graph-based models and enlarges the extent of solvable problems. We hope that this survey will provide a compact and informative summary of the main literature in this research topic. Key-words: Markov Random Fields, Graphical Models, MRFs, Graph-based Methods, MAP Inference, Discrete Optimization ∗ Center for Visual Computing, École Centrale Paris, Châtenay-Malabry, France † Equipe GALEN, INRIA Saclay Île de France, Orsay, France ha l-0 07 34 98 3, v er si on 1 25 S ep 2 01 2 Résumé : Dans cet article, nous présentons un panorama approfondi des champs de Markov aléatoires (MRFs) dans le cadre de la vision par ordinateur, et ce autant du point de vue de la modélisation que de l’inférence. Les MRFs ont été introduits dans le domaine de la vision par ordinateur il y a environ deux décennies, alors qu’ils commençaient à devenir un outil omniprésent pour résoudre les problèmes de perception visuelle à la suite de l’apparition de méthodes efficaces d’inférence. Au cours de la dernière décennie, les différents modèles de MRFs ainsi que les méthodes d’inférence en particulier celles basées sur l’optimisation discrète, ont été mis en oeuvre pour résoudre de nombreux problèmes de vision de bas, milieu et haut niveaux. Alors que la plupart de la littérature concerne les MRFs d’ordre deux, nous avons également assisté au cours des dernières années à des progrès significatifs sur les MRFs d’ordre supérieur, ce qui améliore sensiblement l’expressivité des modèles à base de graphes et élargit le champs d’application de ces méthodes. Nous espérons que cette étude bibliographique fournira un résumé compact et informatif sur la littérature principale concernant ce sujet de recherche. Mots-clés : Champs de Markov Aléatoires, Modèles graphiques, MRFs, Inférence MAP, Optimisation discrète ha l-0 07 34 98 3, v er si on 1 25 S ep 2 01 2 Champs de Markov Aléatoires dans la Perception Vision: Un Panorama 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey

In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the em...

متن کامل

Perceptual Grouping of Contour Segments Using Markov Random Fields

The aim of this work is to exploit regular structure in a scene by using the gestalt laws of perception in the eld of computer vision. The statistical result of a hand labelled training set is employed to derive \Areas of perceptual attentiveness". Grouping hypotheses are thus generated based on local evidence. To judge these hypotheses in a more global context a Markov random eld is used. The ...

متن کامل

Stereo Vision and Markov Random Fields

Here we describe the stereo matching problem from computer vision, and some techniques for solving it as an optimization problem, including loopy belief propagation over Markov random fields. We also discuss some possible applications of these techniques to problems in natural language processing.

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Subset Selection for Gaussian Markov Random Fields

Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1963